
MATH 2050A: Mathematical Analysis I Mid-Term Test

Answer ALL Questions 31 Oct, 2017. 8:30-10:00

1. (i) Use ε-δ notation to show that lim
x→1

1

x2 + 1
=

1

2
.

(ii) Use ε-δ notation to show that lim
x→∞

sinx2

1 + x2
= 0.

(iii) Does the limit lim
x→∞

x2 sinx2

1 + x2
exist? Explain.

2. (i) State the Bolazno-Weierstrass Theorem and the Nested Intervals Theorem.

(ii) Use the Bolazno-Weierstrass Theorem to show the Nested Interval Theorem.

3. Let 0 < a, b < 1. Let f : [0, 1] → [0, 1] be a bijection. Suppose that a|x − y| ≤
|f(x)− f(y)| ≤ b|x− y| for all x, y ∈ [0, 1].

(i) Using ε-δ notation, show that f and the inverse f−1 both are continuous on [0, 1].

(ii) Fix x1 ∈ [0, 1]. Put xn+1 = f(xn), for n = 1, 2.... Show that (xn) is a Cauchy

sequence.

(iii) Show that there is a point z ∈ [0, 1] such that f(z) = z.

End



MATH2050A Midterm Solution

1. (i)

∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ =

∣∣∣∣ 1− x2

2(x2 + 1)

∣∣∣∣ ≤ ∣∣∣∣(1− x)(1 + x)

2

∣∣∣∣ for every x ∈ R.

If 0 < x < 2, then 1 < 1 + x < 3 and

∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ ≤ 3

2
|1− x|

Let ε > 0. We put δ := min(2
3
ε, 1). If 0 < |x− 1| < δ, then∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ < 3

2

(
2ε

3

)
= ε

(ii)

∣∣∣∣ sinx2

1 + x2
− 0

∣∣∣∣ ≤ 1

1 + x2
≤ 1

x2
≤ 1

x
whenever x ≥ 1.

Let ε > 0. We put M := max(1, 1
ε
). If x > M , then∣∣∣∣ sinx2

1 + x2
− 0

∣∣∣∣ ≤ 1

x
<

1

M
≤ ε

(iii) No. Let f(x) :=
x2 sinx2

1 + x2
. Let xn :=

√
2nπ and yn :=

√
(2n+ 1

2
)π for each n ∈ N.

Note xn, yn →∞ as n→∞, but f(xn) = 0 for all n,

f(yn) =
(2n+ 1

2
)π

1 + (2n+ 1
2
)π
→ 1 as n→∞

Therefore, lim
x→∞

f(x) does not exist.

This follows from observing f(x) =

(
x2

1 + x2

)
sinx2, lim

x→∞

x2

1 + x2
6= 0 exists and

lim
x→∞

sinx2 does not exist.

One may also use f(x) +
sinx2

1 + x2
= sinx2 combining with 1(ii).

2. (i) The Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a

convergent subsequence.

Nested Intervals Theorem: If {In} is a sequence of non-empty closed and bounded

intervals such that In+1 ⊂ In for each n ∈ N, then ∩∞n=1In 6= ∅.
Remark. No mark shall be given to the uniqueness part: Suppose further (bn − an)→
0 as n→∞, then ∩∞n=1In = {ξ} for some ξ ∈ R, where In = [an, bn].

(ii) Write In = [an, bn].

Since each interval In is non-empty, pick xn ∈ In. Note a1 ≤ xn ≤ b1 and {xn} is a

bounded sequence. By the Bolzano-Weierstrass Theorem, there exists a convergent

subsequence {xnk
}. Let ξ ∈ R be the limit of {xnk

}. We claim that ξ ∈ In for each

n ∈ N.

Fix N ∈ N. For k ≥ N , xnk
∈ Ink

⊂ Ik ⊂ IN because nk ≥ k ≥ N . Therefore,

aN ≤ xnk
≤ bN for every k ≥ N . By taking limit k → ∞, aN ≤ ξ ≤ bN . That is,

ξ ∈ IN and this holds for every N ∈ N.



3. (i) f is continuous on [0, 1]: Fix any x0 ∈ [0, 1]. Let ε > 0. We put δ :=
ε

b
. If x ∈ [0, 1]

with |x− x0| < δ, then |f(x)− f(x0)| ≤ b |x− x0| < b
(ε
b

)
= ε.

f−1 is continuous on [0, 1]: Fix any x0 ∈ [0, 1]. Let ε > 0. We put δ := aε. If

x ∈ [0, 1] with |x− x0| < δ, then

a
∣∣f−1(x)− f−1(x0)

∣∣ ≤ ∣∣f(f−1(x))− f(f−1(x0))
∣∣ = |x− x0| < δ = aε

hence |f−1(x)− f−1(x0)| < ε.

(ii) Observe that (xn) is a contractive sequence satisfying

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ b |xn − xn−1| for every n ≥ 2

Hence, it is Cauchy: For any n, p ∈ N, first by triangle inequality

|xn+p − xn| ≤ |xn+p − xn+p−1|+ |xn+p−1 − xn+p−2|+ ...+ |xn+1 − xn|
≤ bp−1 |xn+1 − xn|+ bp−2 |xn+1 − xn|+ ...+ |xn+1 − xn|
=
(
bp−1 + bp−2 + ...+ 1

)
|xn+1 − xn|

≤ 1

1− b
|xn+1 − xn|

≤ bn−1

1− b
|x2 − x1|

RHS is independent of p and tends to 0 as n→∞. Therefore, (xn) is Cauchy.

(iii) Since (xn) is Cauchy, lim
n→∞

xn exists. Let z := lim
n→∞

xn and check that it is the

desired point. Since 0 ≤ xn ≤ 1 for each n, so is its limit z. By sequential criteria

and continuity of f , f(z) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = z.


